
Taming the transient while reconfiguring BGP
Tibor Schneider

ETH Zurich
sctibor@ethz.ch

Roland Schmid
ETH Zurich

roschmi@ethz.ch

Stefano Vissicchio
University College London
s.vissicchio@ucl.ac.uk

Laurent Vanbever
ETH Zurich

lvanbever@ethz.ch

ABSTRACT
BGP reconfigurations are a daily occurrence for most network oper-
ators, especially in large networks. Yet, performing safe and robust
BGP reconfiguration changes is still an open problem. Few BGP
reconfiguration techniques exist, and they are either (i) unsafe, be-
cause they ignore transient states, which can easily lead to invariant
violations; or (ii) impractical, as they duplicate the entire routing
and forwarding states, and require special hardware.

In this paper, we introduce Chameleon, the first BGP reconfigu-
ration framework capable of maintaining correctness throughout
a reconfiguration campaign while relying on standard BGP func-
tionalities and minimizing state duplication. Akin to concurrency
coordination in distributed systems, Chameleon models the recon-
figuration process with happens-before relations. This modeling
allows us to capture the safety properties of transient BGP states.
We then use this knowledge to precisely control the BGP route
propagation and convergence, so that input invariants are provably
preserved at any time during the reconfiguration.

We fully implement Chameleon and evaluate it in both testbeds
and simulations, on real-world topologies and large-scale recon-
figuration scenarios. In most experiments, our system computes
reconfiguration plans within a minute, and performs them from
start to finish in a few minutes, with minimal overhead.

CCS CONCEPTS
• Networks → Network management; Routing protocols;
Network control algorithms; Network reliability.

KEYWORDS
Border Gateway Protocol (BGP), reconfiguration, network update,
convergence, scheduling

ACM Reference Format:
Tibor Schneider, Roland Schmid, Stefano Vissicchio, and Laurent Vanbever.
2023. Taming the transient while reconfiguring BGP. InACM SIGCOMM 2023
Conference (ACM SIGCOMM ’23), September 10–14, 2023, New York, NY, USA.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3603269.3604855

This work is licensed under a Creative Commons Attribution 4.0 International License.
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604855

0 1.7
0

16.5 k

Time [s]

Throughput [pkt/s]

Total traffic
Waypoint
Violations

Egress 𝑒1
Egress 𝑒2
Egress 𝑒3

Snowcap [28]

0 58
0

16.5 k

Time [s]

Chameleon

Time [s]

Figure 1: BGP reconfigurations often lead to disruptions,
even when using recent reconfiguration frameworks such as
Snowcap [28]. Here, Snowcap transiently violates two invari-
ants (reachability and waypointing). In contrast, Chameleon
reconfigures the network without violating any.

1 INTRODUCTION
Much has been written about network reconfigurations, their fre-
quency [12, 20, 28, 32, 36] and their disruptiveness [18, 22, 28]. Yet,
reconfiguration-induced downtimes still happen. In fact, Alibaba
recently stated that the majority of their network outages resulted
from configuration updates [22].

Among all reconfiguration scenarios, BGP ones are special be-
cause they are both particularly frequent and potentially highly
disruptive. In large networks, for instance, operators reconfigure
BGP up to 20 times a day on average [36]. Also, since BGP controls
routing to (and from) remote destinations, reconfiguring it can have
Internet-wide consequences. The recent Microsoft outage in Janu-
ary 2023 illustrates this perfectly: Microsoft Azure services were
indeed unavailable for 90 minutes due to a BGP reconfiguration [4].

Perhaps surprisingly, no existing network reconfiguration frame-
work enables both safe (in a way that preserves network invariants)
and practical (in a way that works operationally) BGP reconfigura-
tions.Most previousworks targeted other reconfiguration scenarios,
such as networks running purely intra-domain routing protocols
(OSPF or IS-IS) or SDN/OpenFlow [7]. A few techniques [2, 28, 36]
did focus on BGP reconfiguration, but they suffer from fundamen-
tal limitations. Specifically, “Shadow Configurations” [2] and BGP

https://orcid.org/0000-0003-2858-9120
https://orcid.org/0000-0002-3278-4220
https://doi.org/10.1145/3603269.3604855
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3603269.3604855

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

Ships-in-the-Night [36] perform the reconfiguration by duplicating
the routing and forwarding states on every network device. Doing
so is impractical though as it comes with significant overhead and
is not supported by most routers [7]. In contrast, Snowcap [28]
gradually modifies the BGP configuration in-place while ensuring
that the network converges to a correct state. Snowcap, however,
does not guarantee the correctness of any of the transient states
explored as the network converges during the reconfiguration.

We illustrate the limitations of Snowcap in Fig. 1, which depicts
the evolution of the throughput during a simple reconfiguration of
the 11-router Abilene network (see §6). The reconfiguration should
maintain two invariants: (i) reachability (i.e., traffic should not be
dropped); and (ii) waypointing (i.e., traffic should always cross a
firewall). Snowcap transiently violates both invariants during the
reconfiguration for almost two seconds. For critical (e.g., SLA- or
security-related) requirements, transient violations are problematic.
Additional experiments for different scenarios show a similar trend,
and even longer violations in some cases (cf. Fig. 12).

We present Chameleon, the first in-place BGP reconfiguration
framework that guarantees correctness during the entire reconfigu-
ration process for both the steady and transient states.

Intuitively, building a framework like Chameleon requires solv-
ing a concurrency problem. It indeed entails reasoning about the
asynchronous computations and non-deterministic message ex-
changes of all BGP routers in the network. This is challenging, for
at least three reasons. First, the problem requires a formal con-
currency model of a converging BGP network which exceeds the
existing BGP models—existing network verification models only
reason about the steady state [10, 29] or whether a steady state will
be reached [14]. Second, the safe BGP reconfiguration problem re-
quires to design concurrency control mechanisms (i.e., synchroniza-
tion techniques) that provably maintain network-wide correctness
without controlling individual BGP message timings. Finally, it re-
quires to design a runtime controller that can efficiently orchestrate
the entire reconfiguration process.

We address the challenges in the following ways. First, we in-
troduce a happens-before model which captures BGP-specific con-
currency. Using this model, we show how to constrain BGP route
propagation through synchronization barriers that provably main-
tain invariants for all possible concurrent executions. We then
compile this schedule into a reconfiguration plan. This plan en-
forces the computed synchronization barriers by pushing standard
BGP commands to the routers and checking their execution. Finally,
Chameleon’s runtime controller applies this reconfiguration plan
to the live network.

Ensuring network correctness throughout the entire reconfigura-
tion process does not come for free: the need to coordinate some of
the BGP computation means that the reconfiguration will typically
last longer. This cost is exemplified in Fig. 1, where Chameleon
took 58 sec to complete instead of 1.7 sec for Snowcap. All in all,
we think that such an increase in duration is a small price to pay
for the increased correctness.

We implement Chameleon and evaluate it in both testbeds and
simulations on real-world topologies and large reconfiguration sce-
narios. In most experiments, Chameleon computes reconfiguration
plans in <1 min and performs them from start to finish in a few
minutes, with minimal overhead.

Temporal operators
𝜙 F 𝜙 now
| N𝜙 next
| G𝜙 globally
| F𝜙 finally
| 𝜙 U𝜙 until
| 𝜙 R𝜙 release
| 𝜙 W𝜙 weak U
| 𝜙 M𝜙 mighty W

Logical operators
𝜙 F 𝜙 ∧ 𝜙 conjunction
| 𝜙 ∨ 𝜙 disjunction
| ¬𝜙 negation

Propositional variables
𝜙 F reach(𝑛) reachability
| wp(𝑛,𝑛) waypointing

𝑛 F node node

Figure 2: Grammar for constructing a specification 𝜙 for a
single destination 𝑑 . Chameleon guarantees that 𝜙 is satis-
fied during the entire reconfiguration, i.e., the sequence of
forwarding states satisfies 𝜙 .

To sum up, our main contributions are:
• The first practical BGP reconfiguration technique capable of
preserving correctness invariants throughout the entire recon-
figuration campaign, including transient states.
• A concurrency model for BGP reconfigurations and its conver-
gence process using happens-before relations.
• A complete implementation of Chameleon in Rust alongside an
online application to explore reconfiguration scenarios (available
at https://bgpsim.github.io?s=example).
• An extensive evaluation of Chameleon and its overhead.

2 OVERVIEW
We now provide an overview of Chameleon. We start with the
problem statement and illustrate the challenges using a running
example before describing Chameleon’s high-level workflow.

2.1 Problem Statement
Reconfiguration. We refer to the problem of adapting the BGP

configuration of one or more routers as a BGP reconfiguration. Ex-
amples of reconfigurations include: (i) local changes like adding or
removing a BGP session or changing the local preference of routes
learned from a specific neighbor; and (ii) global changes such as
switching from an iBGP full-mesh to route reflection network-wide.

Specification. We refer to a specification 𝜙 as a set of network
invariants that describe important forwarding properties for the
network operators. Our specification language (cf. Fig. 2) combines
individual properties with boolean operators and Linear Tempo-
ral Logic (LTL). Boolean operators allow users to express intricate
properties on the forwarding state, such as isolating traffic from
parts of the network. In contrast, temporal operators formulate
constraints on the sequences of transient states explored during
reconfigurations. For example, if a reconfiguration involves chang-
ing the egress router of a given destination prefix, operators can
require routers to switch from the initial egress router to the final
egress once, without switching back and forth multiple times.

We assume the initial and final configurations are correct and
comply with 𝜙 . Otherwise, there is little point in maintaining cor-
rectness during the reconfiguration. Similarly, we assume that the
initial and final configurations eventually converge to a stable
state [14, 15] to ensure that the semantics of input specifications is
always sound.

https://bgpsim.github.io?s=example

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

𝑛1

𝑛2

𝑛4

𝑛3

𝑛5

𝑛6𝜌1 𝜌6
𝑙𝑝 = 200

50

𝑙𝑝 = 100

Figure 3: Example network with six internal routers. Two
routers 𝑛1 and 𝑛6 receive a route 𝜌1 and 𝜌6, respectively, for
the same prefix. The depicted reconfiguration lowers the
local preference of 𝜌1 from 200 to 50, causing the network to
shift from using 𝜌1 to 𝜌6.

Goals. We aim to perform both local and global BGP reconfig-
urations in-place while guaranteeing the correctness of a given
specification 𝜙 throughout the entire process. Specifically, we aim
to achieve the following properties:
1. (safety) the reconfiguration process must guarantee that the

input specification 𝜙 is satisfied throughout any transient state
explored during the BGP convergence process;

2. (practicality) the reconfiguration process must limit the over-
head it imposes on routers’ resources, including routing and
forwarding table sizes and reconfiguration time.

Running example. As an example BGP reconfiguration scenario,
we consider the network in Fig. 3, which consists of six BGP routers,
two of which (𝑛2 and 𝑛5) operate as route reflectors [3].1 Routers
𝑛1 and 𝑛6 each receive one BGP route for the same prefix. We refer
to those routes as 𝜌1 and 𝜌6, respectively. The reconfiguration
involves decreasing the local preference of 𝜌1 from 200 to 50 so
that all routers switch to using 𝜌6. We suppose the operators aim at
preserving reachability throughout the reconfiguration, which they
can express as 𝜙 = G

∧
𝑖 reach(𝑛𝑖) in our specification language.

Preferring 𝜌6 will cause all routers to forward “to the right”
instead of “to the left.” Intuitively, reachability is violated whenever
routers on the left-hand side of the network (𝑛1, 𝑛2 or 𝑛4) update
their state before routers on the right (𝑛3, 𝑛5 or 𝑛6). Depending on
the timing of the BGP messages, this can easily happen, especially
since 𝑛3 only learns 𝜌6 from one of the two route reflectors, 𝑛2 or
𝑛5, i.e., after they have already selected 𝜌6.

2.2 Chameleon
In a nutshell, Chameleon achieves safety by coordinating the for-
warding state updates BGP makes during the reconfiguration. To
practically coordinate the updates, Chameleon gradually introduces
a temporary BGP configuration (which differs from both the initial
and final configuration). This temporary configuration enforces a
particular ordering of BGP messages that satisfies the specification.

Finding and implementing specific message orderings is far from
trivial. The first challenge is capturing achievable orderings by
introducing temporary BGP configurations. This is hard as many
BGP-specific mechanisms—like route reflection [15]—limit route
visibility. The second challenge is implementing a specific execution
using temporary configurations; this requires both reasoning about
the distributed routing state and synchronizing BGP computations.
1Concretely, this means that 𝑛2 and 𝑛5 redistribute the best BGP routes they receive
to all other routers in the network.

Workflow. Chameleon solves those challenges by following the
following three consecutive steps. Chameleon’s workflow is visual-
ized in Fig. 4 using the running example from Fig. 3.

1. The analyzer describes the space of concurrent convergence
processes by analyzing the initial and final configuration (the
input to Chameleon) and computing happens-before relations
between routing states of different routers.

2. The scheduler explores the space of convergence processes
spanned by the happens-before relations to find one that satisfies
the specification. It describes this convergence process as a node
schedule that captures which routes are selected at which time.

3. The compiler transforms this node schedule into a reconfig-
uration plan, that is, a sequence of temporary configuration
commands and local conditions for synchronization.

Finally, Chameleon’s runtime controller performs the reconfig-
uration on the live network by checking the local conditions and
applying the commands, precisely following the compiled recon-
figuration plan. In the following, we describe all three steps of
Chameleon in more detail, using the running example from Fig. 3.

Step 1: Analyzer §3. The analyzer extracts happens-before rela-
tions between selected routes in the network, encoding the propaga-
tion path of routes. These relations define the space of convergence
processes that are realizable just using temporary BGP configu-
rations. We obtain these relations by simulating the network and
analyzing the resulting network state in a way that generalizes to
any BGP configuration.

In our example from Fig. 3, router 𝑛1 propagates the initial route
𝜌1 to both route reflectors𝑛2 and𝑛5, who then announce 𝜌1 towards
𝑛3, 𝑛4, and 𝑛6. Therefore, 𝑛4 can choose 𝜌1 as long as 𝑛2 or 𝑛5 select
𝜌1. We repeat the same for 𝜌6.

Step 2: Scheduler §4. We express the happens-before relations
together with the specification as an Integer Linear Program (ILP). A
solution to the ILP is a node schedule describing a BGP convergence
process that meets the specification, in both steady and transient
states. The scheduler allows concurrent updates if their relative
order does not affect the specification. Further, Chameleon allows
additional propagation paths to increase route visibility and ensure
a solution exists. We maximize the number of concurrent updates
(thus, minimizing the reconfiguration time) as a primary objective
while reducing additional propagation paths as a secondary goal.

Chameleon schedules the example reconfiguration using four
rounds, updating nodes from right to left. It also computes the
rounds inwhich a router selects its old or new route. In Fig. 4, orange
arrows represent the propagation of the old route 𝜌1, whereas blue
arrows depict the new one 𝜌6.

Step 3: Compiler §5. Chameleon computes a reconfiguration plan
to implement the calculated schedule, along with local conditions to
synchronize the update and guarantee correctness. Each temporary
command only rewrites routing preferences by modifying route
attributes such as weight [25] or local preference. The conditions
assert a router knows or selects a specific route and can be checked
locally by inspecting that router’s routing table.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

old & new
configuration

𝜙
specification

Inputs

Pold, Dold

Pnew, Dnew

Happens-Before

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑘 = 4

Node Schedule

𝑛6 selects 𝜌6
𝑛4 selects 𝜌1 from 𝑛1 †

𝑛3 selects 𝜌6 from 𝑛6 †
𝑛5 selects 𝜌6 form 𝑛6

𝑛2 selects 𝜌6 from 𝑛6
𝑛4 selects 𝜌6 from 𝑛5

𝑛1 decreases LP for 𝜌1
𝑛1 selects 𝜌6 from 𝑛5
𝑛3 selects 𝜌6 from 𝑛5

† temporary BGP sessions

Reconfiguration Plan

A
na

ly
ze
r
§3

Sc
he

du
le
r
§4

C
om

pi
le
r
§5

Figure 4: Chameleon computes a reconfiguration plan to transition from the old to the new configuration while satisfying the
specification. The illustrated instance corresponds to the example from Fig. 3. Explore this reconfiguration plan interactively
at https://bgpsim.github.io?s=example. We provide a tutorial in App. E.

Chameleon’s reconfiguration plan for our example first updates
the egress router 𝑛6 to make 𝜌6 available in the network. It then
makes both 𝑛5 and 𝑛3 select 𝜌6 using a temporary session between
𝑛3 and 𝑛6. In Round 3, it updates both 𝑛2 and 𝑛4. Chameleon in-
troduces a temporary session between 𝑛4 and 𝑛1 to break 𝑛4’s
dependency on 𝑛2. Finally, Chameleon finishes the reconfigura-
tion by updating the local-pref on 𝑛1, which causes 𝑛1 to select 𝜌6.
Notice, that this reconfiguration can be performed without using
temporary BGP sessions by reducing concurrent updates.

If the reconfiguration updates multiple destinations at a time,
Chameleon runs the scheduler and the compiler for each destina-
tion separately and combines the generated schedules. This is only
possible if all prefixes converge independently, which is valid case
for most networks. However, there might exist networks for which
some prefixes are dependent. We explain in §8 how the scheduler
can be extended to support such networks.

3 ANALYZER
Chameleon models the routing state of the network as propagation
paths of BGP routes. It then describes the reconfiguration process in
terms of how these routes change over time and formulates happens-
before relations capturing safety conditions on BGP transient states.

Network & Routing Model. We model the network as a graph
𝐺 = (𝑁, 𝐸) with nodes 𝑁 connected by edges 𝐸. External networks
advertise BGP routes towards a destination 𝑑 to multiple nodes; the
egress routers of𝐺 . Nodes propagate routes over BGP sessions that
form an overlay signaling graph, different from the physical topol-
ogy. We define routes in terms of their propagation path rather than
modeling a route’s specific BGP attributes. If 𝜌 = [𝑑, 𝑛1, . . . , 𝑛𝑖 , 𝑛]
is a route received at node 𝑛, then 𝜌 was first received by the
egress router 𝑒 (𝜌) = 𝑛1, and advertised to 𝑛 by its BGP neighbor
𝑛𝑖 = pre(𝜌). The network’s configuration determines:

(i) which route 𝜌 a node 𝑛 selects,
(ii) to which neighbors 𝑛 announces its selected route 𝜌 ,
(iii) how the egress 𝑒 (𝜌) is mapped to the next hop.

The collection of all nodes and their next hop is called a forwarding
state. For a single destination 𝑑 , we express the forwarding state
𝑛ℎ : 𝑁 ↦→ 𝑁∪{𝑑, ∅} as amapping of each node to its next hop. Node
𝑛 drops packets if 𝑛ℎ(𝑛) = ∅, and forwards them to the external
network if nh(𝑛) = 𝑑 .

A routing state P assigns each node 𝑛 its selected route P(𝑛) for
destination 𝑑 . We call a routing state P consistent if

∀𝑛 ∈ 𝑁 : P(𝑛) = [𝑑, 𝑛1, . . . , 𝑛𝑖 , 𝑛] ⇒ P(𝑛𝑖) = [𝑑, 𝑛1, . . . , 𝑛𝑖] .

Observe that the routing state of any converged network, that is, a
network in a fixed routing state with no more messages in flight,
is always consistent. However, the consistency of a routing state
only ensures that there exists a configuration such that the network
converges to this routing state.

Using these terms, we define a BGP reconfiguration as the transi-
tion from an initial routing state Pold to the final routing state Pnew.
A reconfiguration process [Pold,P1, . . . ,Pnew] is a sequence of rout-
ing states which contains all the intermediate routing states of the
network during a reconfiguration. A reconfiguration process is safe
if its corresponding sequence of forwarding states satisfies the spec-
ification that the operator expresses [nhold, nh1, . . . , nhnew] |= 𝜙 .

Our routing model considers a single destination 𝑑 at a time.
However, one destination can represent an entire class of equiv-
alent prefixes for which the network computes the same routing
and forwarding state. If a BGP reconfiguration affects multiple
destinations, Chameleon treats each prefix equivalence class sep-
arately: this is safe because BGP separately processes individual
destinations.

Methodology & Framework. Chameleon controls each interme-
diate routing state during the reconfiguration to safely transition
from Pold to Pnew. To that end, Chameleon synthesizes a sequence
of routing states such that each state is consistent. Consequently,
the BGP reconfiguration process never affects the forwarding state.
Instead, we trigger each routing and forwarding state update by
reconfiguring nodes.

https://bgpsim.github.io?s=example

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

𝑛1𝑑

𝑛2

𝑛4

𝑛3

𝑛5

𝑛6
𝜌𝑎 𝜌𝑏

nh(𝑛4) = 𝑛1

Pold (𝑛4) = [𝑑,𝑛1, 𝑛2, 𝑛4]
∨ [𝑑,𝑛1, 𝑛5, 𝑛4]

Dold (𝑛4) = {𝑛2, 𝑛5}

Figure 5: Illustration of the BGP convergence model based
on the example from Fig. 3 in the initial state.

A naive approach to synthesizing a sequence of routing state
updates is to make each node 𝑛 switch its selected route directly
from the initial route Pold (𝑛) to its final one Pnew (𝑛). This technique,
however, does not work for most reconfiguration scenarios. Assume
node𝑛 learns both its initial and final route from𝑛𝑖 = pre(Pold (𝑛)) =
pre(Pnew (𝑛)). The naive approach cannot ensure the consistency
of every routing state, as 𝑛𝑖 must switch before 𝑛. While 𝑛𝑖 is using
Pnew (𝑛) and 𝑛 still selects Pold (𝑛), the routing state is inconsistent.
Chameleon uses two techniques to resolve this issue.

The first technique is to establish a temporary BGP session di-
rectly with the egress router, 𝑒 (Pold (𝑛)) or 𝑒 (Pnew (𝑛)). This session
allows 𝑛 to select the route [𝑑, 𝑛1, 𝑛] directly. This technique has
two significant downsides. First, the additional session causes state
duplication. Second, the new route may have different BGP at-
tributes that affect the route propagation. Thus, we must ensure no
other node selects a route from 𝑛 while 𝑛 selects [𝑑, 𝑛1, 𝑛].

The second technique to ensure each routing state’s consistency
is to leverage BGP redundancy. Most BGP configurations using
route reflection have multiple reflectors. As a result, node 𝑛 may re-
ceive multiple equivalent routes that share the same BGP attributes.
Choosing one equivalent route over another does not impact the
forwarding state, but it affects the routing state. Therefore, sim-
ply switching between equivalent routes can violate routing state
consistency while the update propagates through the network. We
introduce a setup and cleanup phase, during which Chameleon
chooses between equivalent routes, ensuring the forwarding state
remains unchanged. Chameleon still enforces routing state consis-
tency during the main update phase.

Our methodology results in each node 𝑛 updating its next hop
exactly once from 𝑛ℎold (𝑛) to 𝑛ℎnew (𝑛). Thus, Chameleon never
exports any transient routes towards inter-domain neighbors. How-
ever, there may exist highly constraining specifications that Cha-
meleon cannot enforce. We prove in App. B that our methodology
is sufficient to perform any reconfiguration preserving reachability.

Happens-Before Relations. We model a BGP reconfiguration pro-
cess within our framework using happens-before relations. First,
we capture the set of all neighbors that advertise identical routes
as the initial and the final route towards node 𝑛 using Dold (𝑛)
and Dnew (𝑛), respectively. 𝑛 cannot use its initial route Pold (𝑛) for
longer than any of Dold (𝑛) also select their initial route. Likewise,
𝑛 can only select Pnew (𝑛) as soon as any ofDold (𝑛) select their final
route. The resulting happens-before relations for node 𝑛 are:
• 𝑛 selects Pold (𝑛) =⇒ ∃𝑚 ∈ Dold (𝑛) that selects Pold (𝑚).
• 𝑛 selects Pnew (𝑛) =⇒ ∃𝑚 ∈ Dnew (𝑛) that selects Pnew (𝑚).

Fig. 5 illustrates the happens-before relations for the initial state
using the running example introduced in Fig. 3. Node 𝑛4 receives
equivalent routes for 𝑑 with propagation paths 𝜌𝑎 and 𝜌𝑏 from
route reflectors 𝑛2 and 𝑛5. Thus, 𝑛4 can select route Pold (𝑛4) for as
long as either 𝑛2 or 𝑛4 advertise it.

4 SCHEDULER
We now detail Chameleon’s scheduler. The goal of the scheduler
is to generate a node schedule, that is, the order in which routers
switch from selecting their old route in Pold to their new route Pnew.
We encode this schedule by assigning each node a round in which it
will change its routing (and forwarding) decision. We formalize the
problem of finding a schedule with at most 𝑅 rounds as an ILP. We
increment 𝑅 in a loop as long as no solution exists, thus minimizing
the number of rounds 𝑅 and, consequently, the reconfiguration
time. Our ILP captures these three high-level properties:
1. Happens-before relations: The scheduler transforms the happens-

before relations from §3 into constraints. We design the objective
function to minimize the number of temporary BGP sessions.

2. Concurrent Updates: Allowing nodes to update concurrently re-
duces the number of required rounds. However, this concurrency
can lead to different update orderings within a single round.
Therefore, we require all routers to change their next hop in
a round where no other router along its path also changes its
forwarding decision. This constraint guarantees updates in the
same round are independent concerning the forwarding state.

3. Specification: The resulting sequence of forwarding states must
satisfy the specification 𝜙 , expressed as LTL.

4.1 Happens-Before Relations
We enforce BGP propagation rules in the ILP model by using three
symbolic integer variables for each node 𝑛 ∈ 𝑁 :∧

𝑛∈𝑁
𝑟𝑛old ≤ 𝑟𝑛nh ≤ 𝑟𝑛new . (1)

We call the 3-tuple
(
𝑟𝑛old, 𝑟

𝑛
nh, 𝑟

𝑛
new

)
the schedule of node 𝑛. Here,

𝑟𝑛nh ∈ N describes the round in which 𝑛 changes its next hop.
Further, 𝑟𝑛old ∈ N capture the last round when 𝑛 receives the old
route Pold (𝑛), and 𝑟𝑛new ∈ N is first round for 𝑛 to receive Pnew (𝑛).

Next, we enforce BGP route propagation as described by the
happens-before model in §3. A neighbor𝑚 ∈ Dold (𝑛) must exist
that selects its old route Pold (𝑚) for longer than 𝑛 selects Pold (𝑛),
i.e., 𝑟𝑛old < 𝑟𝑚old. Similarly, a neighbor𝑚 ∈ Dnew (𝑛) must exist that
selects its new route before 𝑛 does, i.e., 𝑟𝑛new > 𝑟𝑚new. This yields∧

𝑛∈𝑁
𝑟𝑛old < max

𝑚∈Dold (𝑛)
𝑟𝑚old ∧

∧
𝑛∈𝑁

𝑟𝑛new > min
𝑚∈Dnew (𝑛)

𝑟𝑚new .

Whenever 𝑟𝑛old < 𝑟𝑛nh, node 𝑛 no longer knows its initial route
Pold (𝑛) as long as it must use its old next hop. Similarly, if 𝑟𝑛nh < 𝑟𝑛new,
node𝑛 does not know routePnew (𝑛) when it should use its new next
hop. In both cases, we must introduce a temporary BGP session.
We minimize the number of such sessions as follows:

min
∑︁
𝑛∈𝑁

(
1 if 𝑟𝑛old ≠ 𝑟𝑛nh else 0

) + (1 if 𝑟𝑛nh ≠ 𝑟𝑛new else 0
)
.

We encode all non-linear min, max, and if-then-else operators with
linear constraints using the big-𝑀 method [16].

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

4.2 Concurrent Updates
Our ILP allows multiple nodes to update their next hop in the
same round. As a result, individual updates of the same round may
occur in any order. Hence, the ILP must guarantee the specification
is satisfied in all possible orderings for each round. To that end,
Chameleon ensures all forwarding state updates in the same round
are independent. We define two forwarding state updates of node
𝑛1 and 𝑛2 to be independent if the forwarding path of 𝑛1 before and
after the update does not traverse 𝑛2, and vice versa—consequently,
every forwarding path in the network experiences at most one
change in each round.

We enforce the independence of all forwarding state updates in
the same round recursively. For each node 𝑛 ∈ 𝑁 and round 𝑘 , we
introduce the boolean variable 𝛿𝑛

𝑘
∈ B to capture whether either 𝑛

or a different node along the forwarding path of 𝑛 changes its next
hop in round 𝑘 . We express 𝛿𝑛

𝑘
in terms of its next hop:

𝛿𝑛𝑘 =




𝛿𝑥
𝑘

if 𝑟𝑛nh > 𝑘 𝑛 uses its old route in round 𝑘

1 + 𝛿𝑥
𝑘
+ 𝛿𝑦

𝑘
if 𝑟𝑛nh = 𝑘 𝑛 changes its route in round 𝑘

𝛿
𝑦
𝑘

if 𝑟𝑛nh < 𝑘 𝑛 uses its new route in round 𝑘

(2)

where𝑥 = nhold (𝑛) and𝑦 = nhnew (𝑛)
In case 𝑟𝑛nh ≠ 𝑘 , 𝛿𝑛

𝑘
directly depends on either the initial or the final

next hop. However, in case 𝑛 changes its routing decision in round
𝑟𝑛nh = 𝑘 , then 𝛿𝑛

𝑘
= 1 + 𝛿𝑥

𝑘
+ 𝛿𝑦

𝑘
. Since 𝛿𝑛

𝑘
∈ {0, 1}, this constraint

implies that 𝛿𝑥
𝑘
= 0 and 𝛿𝑦

𝑘
= 0, i.e., that there is no other update

along either the old or the new forwarding path of 𝑛.

4.3 Specification
To encode the specification 𝜙 in the ILP, Chameleon generates a
syntax tree according to the specification language. Each node in
that graph is labeledwith its production rule, as shown in Fig. 2.2 We
then generate a directed acyclic graph 𝐺𝜙 = (Φ, 𝐸𝜙) by combining
equivalent nodes with identical descendants. In other words, we
simplify the tree by combining branches that result in redundant
constraints. In the following, we call each node𝜙𝑖 ∈ Φ in this syntax
graph an expression. For each expression 𝜙𝑖 ∈ Φ, we introduce
symbolic boolean variables 𝜙𝑖,𝑘 ∈ B. 𝜙𝑖,𝑘 is true if and only if the
expression 𝜙𝑖 is satisfied in round 𝑘 . The following explains the
constraints we add to the ILP for each kind of expression.

Reachability. Chameleon creates recursive constraints to en-
sure reachability. Essentially, we say a node 𝑛 satisfies reachability
reach(𝑛) if its next hop does so. This recursive statement requires
not only checking 𝑛 for reachability but also every other node
𝑚 ∈ 𝑁 in the network. More formally, for each node 𝑚 ∈ 𝑁
and each round 𝑘 ∈ {1, . . . , 𝑅}, we introduce a boolean variable
𝜙𝑚reach,𝑘 ∈ B and constrain it in terms of𝑚’s next hop 𝑥 :

𝜙𝑚reach,𝑘 =




1 if 𝑥 = 𝑑
0 if 𝑥 = ∅
𝜙𝑥reach,𝑘 otherwise

where𝑥 = nhnew (𝑚) if 𝑟𝑚nh ≤ 𝑘 else nhold (𝑚)
2Our implementation ensures the uniqueness of this tree by surrounding each produc-
tion rule with parenthesis.

Here, nhold and nhnew are the initial and final forwarding states,
and 𝑥 is the next hop of node 𝑚 at round 𝑘 . Notice that these
constraints are sufficient if and only if there are no forwarding
loops. We explain in §4.4 how we ensure the absence of loops.

Waypointing. Waypoints are treated similarly to reachability.
Node 𝑛 satisfies wp(𝑛,𝑤) if its next hop does so or if its next hop
is 𝑤 . For each waypoint target 𝑤 ∈ 𝑁 in the specification, we
introduce a boolean variable 𝜙𝑚wp(𝑤),𝑘 for each node𝑚 ∈ 𝑁 and
round 𝑘 ∈ {1, . . . , 𝑅}, constrained in terms of𝑚’s next hop 𝑥 :

𝜙𝑚wp(𝑤),𝑘 =




1 if 𝑥 = 𝑤 ∨ 𝑛 = 𝑤
0 if 𝑥 ∈ {∅, 𝑑}
𝜙𝑥wp(𝑤),𝑘 otherwise,

where𝑥 = nhnew (𝑚) if 𝑟𝑚nh ≤ 𝑘 else nhold (𝑚) .

Logical and Temporal Modal Operators. Chameleon encodes a
logical or temporal modal expression 𝜙𝑖 by following its produc-
tion rule and refering to the symbolic boolean variables of its sub-
expressions. We constrain the variables 𝜙𝑖,𝑘 ∈ B as follows:

• We implement the conjunction rule 𝜙𝑖 = 𝜙𝑎 ∧ 𝜙𝑏 at round 𝑘
using the big-𝑀 method [16]: 𝜙𝑖,𝑘 = 𝜙𝑎,𝑘 ∧ 𝜙𝑏,𝑘 . The other
logical operators (¬ and ∨) are constructed identically.
• We encode the globally operator 𝜙𝑖 = G𝜙𝑎 by asserting 𝜙𝑎 is
satisfied indefinitely, starting from 𝑘 : 𝜙𝑖,𝑘 =

∧
𝑗≥𝑘 𝜙𝑎,𝑗 .

• To encode the until operator 𝜙𝑖 = 𝜙𝑎 U𝜙𝑏 , we assert the exis-
tence of a round 𝑙 ≥ 𝑘 until which 𝜙𝑎 is satisfied, and at which
𝜙𝑏 holds. To that end, we unroll the ∃ quantifier:

∨
𝑙≥𝑘

(
𝜙𝑏,𝑙 ∧

∧
𝑚<𝑙

𝜙𝑎,𝑚
)

• We implement all other temporal modal operators similarly to U
and G by unrolling logical quantifiers.

Ultimately, we assert the reconfiguration plan satisfies 𝜙 by assert-
ing the root of the syntax tree 𝜙𝑟 holds in the first round 𝑘 = 1:

𝜙𝑟,1 = 1.

4.4 Absence of loops
The recursive constraints of reachability and waypoint require the
absence of forwarding loops. To illustrate, let us consider a for-
warding loop between 𝑛1 and 𝑛2. While generating the reachability
constraints, Chameleon only requires 𝜙𝑛1

reach = 𝜙𝑛2
reach, thus allowing

the model to choose an arbitrary value for 𝜙𝑛1
reach.

We ensure the absence of forwarding loops by enumerating all
possible forwarding loops. To that end, we build a graph 𝐺nh =
(𝑁, 𝐸nh) by combining the old and the new forwarding states. For
each node 𝑛 ∈ 𝑁 , 𝐺nh contains two edges from 𝑛 to its old and
new next hop, nhold (𝑛) and nhnew (𝑛), i.e., (𝑛, nhold (𝑛)) ∈ 𝐸nh and
(𝑛, nhnew (𝑛)) ∈ 𝐸nh. Each simple cycle in𝐺nh represents one possi-
ble forwarding loop. We enumerate all simple cycles 𝐿 of 𝐺nh. For
each cycle 𝑙 = (𝑛1, . . . , 𝑛 𝑗 , 𝑛1) ∈ 𝐿 of length 𝑗 and each round 𝑘 , we
assert that not all nodes 𝑛𝑖 along the cycle can choose 𝑛𝑖+1 as next
hop simultaneously:

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

𝑗 >
∑︁
𝑖≤ 𝑗




1 if 𝑛𝑖+1 = nhold (𝑛𝑖) ∧ 𝑟𝑛𝑖nh > 𝑘

1 if 𝑛𝑖+1 = nhnew (𝑛𝑖) ∧ 𝑟𝑛𝑖nh ≤ 𝑘

0 otherwise

(3)

The constraints on concurrent updates (cf. §4.2 and Eq. (2)) im-
plicitly ensure the absence of loops if the initial forwarding state is
loop-free. We provide a proof in App. D. However, we notice the
variance of the scheduling time of Chameleon decreasing when
explicitly enumerating each possible loop, while the average time
is unaffected. We, therefore, keep the explicit loop constraints in
the model even though they are not strictly necessary.

5 COMPILER
Chameleon’s compiler transforms the schedule of the routing and
forwarding state into a reconfiguration plan. This reconfiguration
plan consists of a sequence of commands and conditions, consti-
tuting synchronization to implement the schedule. Each command
will only affect a specific entry of a single router’s routing and
forwarding table. Similarly, each conditions only need to check a
particular entry of the routing or forwarding tables. The following
explains how the compiler transforms the 3-tuples (𝑟𝑛old, 𝑟𝑛nh, 𝑟𝑛new),
computed by the scheduler, into a reconfiguration plan.

To gradually transition the routing state as computed by the
scheduler, Chameleon changes route attributes that stay local to
that device without affecting other routers in the network. To that
end, the compiled commands modify a route’s weight [25] using
route maps.

Reconfiguration Phases. The reconfiguration plan consists of
three phases: setup, update, and cleanup. During the update phase,
we forbid Chameleon to switch between equivalent routes from dif-
ferent neighbors (cf. §3). Instead, we ensure each node appropriately
changes its BGP neighbor in the setup phase. Based on the happens-
before relations, there must exist a neighbor 𝑚𝑛

old ∈ Dold (𝑛) of
node 𝑛 that advertises Pold (𝑛) to 𝑛 for longer than 𝑟𝑛old. Similarly,
a neighbor𝑚𝑛

new ∈ Dnew (𝑛) advertises Pnew (𝑛) to 𝑛 before round
𝑟𝑛new. The setup phase ensures each node 𝑛 prefers the route learned
from𝑚𝑛

old. Further, the setup phase establishes all temporary BGP
sessions. Similarly, the cleanup phase removes all route preferences
and temporary sessions.

We divide the update phase into 𝑅 rounds. Chameleon ensures
synchronization by (i) using pre- and post-conditions for commands
and (ii) transitioning between rounds when all post-conditions
are satisfied. Pre-conditions check a route’s availability, while a
post-condition ensures it is selected. Chameleon generates those
commands and conditions using rules shown in Table 1 based on
the 3-tuple (𝑟𝑛old, 𝑟𝑛nh, 𝑟𝑛new) of each node 𝑛. These rules guarantee
node 𝑛 selects Pold (𝑛) until round 𝑟𝑛old, updates its next hop in round
𝑟𝑛nh, and then selects Pnew (𝑛) starting from round 𝑟𝑛new.

Table 1: Compilation rules for the update phase.

𝑟𝑛old = 𝑟𝑛nh = 𝑟𝑛new:

• In round 𝑟𝑛nh, make 𝑛 prefer Pnew (𝑛) from𝑚𝑛
new.

◦ pre-condition: 𝑛 knows Pnew (𝑛) .
◦ post-condition: 𝑛 selects Pnew (𝑛) .

𝑟𝑛old < 𝑟𝑛nh = 𝑟𝑛new:

• In round 𝑟𝑛old, make 𝑛 prefer the route from 𝑒
(Pold (𝑛))

using a temporary BGP session.
◦ post-condition: 𝑛 selects the route from 𝑒

(Pold (𝑛)) .
• In round 𝑟𝑛nh, make 𝑛 prefer Pnew (𝑛) from𝑚𝑛

new.
◦ pre-condition: 𝑛 knows Pnew (𝑛) .
◦ post-condition: 𝑛 selects Pnew (𝑛) .

𝑟𝑛old = 𝑟𝑛nh < 𝑟𝑛new:

• In round 𝑟𝑛nh, make 𝑛 prefer the route from 𝑒
(Pnew (𝑛))

using a temporary BGP session.
◦ post-condition: 𝑛 selects the route from 𝑒

(Pnew (𝑛)) .
• In round 𝑟𝑛new, make 𝑛 prefer Pnew (𝑛) from𝑚𝑛

new.
◦ pre-condition: 𝑛 knows Pnew (𝑛) .
◦ post-condition: 𝑛 selects Pnew (𝑛) .

𝑟𝑛old < 𝑟𝑛nh < 𝑟𝑛new:

• In round 𝑟𝑛old, make 𝑛 prefer the route from 𝑒
(Pold (𝑛))

using a temporary BGP session.
◦ post-condition: 𝑛 selects the route from 𝑒

(Pold (𝑛)) .
• In round 𝑟𝑛nh, make 𝑛 prefer the route from 𝑒

(Pnew (𝑛))
using a temporary BGP session.
◦ post-condition: 𝑛 selects the route from 𝑒

(Pnew (𝑛)) .
• In round 𝑟𝑛new, make 𝑛 prefer Pnew (𝑛) from𝑚𝑛

new.
◦ pre-condition: 𝑛 knows Pnew (𝑛) .
◦ post-condition: 𝑛 selects Pnew (𝑛) .

Original Reconfiguration Commands. Applying the reconfigura-
tion plan must transition the network from the initial to the final
configuration. Chameleon interleaves its temporary commands
with the original reconfiguration commands. Let 𝑁 ∗ ⊆ 𝑁 contain
all nodes subject to those commands. For each node 𝑛 ∈ 𝑁 ∗, we
apply the original commands 𝑐∗ for 𝑛 immediately before or after
𝑟𝑛nh. If 𝑐

∗ makes 𝑛 deny route Pold (𝑛), then we execute 𝑐∗ after 𝑟𝑛nh.
Otherwise, we schedule 𝑐∗ before 𝑟𝑛nh. Thus, we guarantee 𝑛 knows
Pold (𝑛) until round 𝑟𝑛nh, and Pnew (𝑛) starting from 𝑟𝑛nh.

Chameleon treats each destination separately. To support recon-
figurations that affect multiple destinations, Chameleon performs
the update phase for all destinations in parallel and aligns their
execution along the original commands. For instance, assume that
the original command 𝑐∗ is applied before round 3 for destination
𝑑1 and after round 4 for 𝑑2. We perform the update phase for 𝑑1
until round 2 and 𝑑2 until round 4. Then, we apply the 𝑐∗ and pro-
ceed with the update phase of both 𝑑1 and 𝑑2. However, such an
alignment may not exist if multiple nodes are subject to the origi-
nal reconfiguration. In fact, the schedule for 𝑑1 could require the
original command 𝑐∗1 to be applied after 𝑐∗2 , whereas 𝑑2 expects the
reverse order for 𝑐∗1 and 𝑐

∗
2 . In that case, we use Snowcap to split

the reconfiguration into commands that targeting individual nodes.
We then apply each of them one by one in an ordering computed
by Snowcap.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

0 19 30 40 48 59 71 81 91 112
0

16.5 k
Se
tu
p

𝑘
=
1

𝑘
=
2

𝑘
=
3

𝑘
=
4

𝑘
=
5

𝑘
=
6

𝑘
=
7

C
le
an

up

Time [s]

Throughput [pkt/s]
Total traffic Egress 𝑒1
Egress 𝑒2 Egress 𝑒3

Figure 6: Most rounds take between 10 and 12 seconds
to execute. The highlighted regions visualize the setup or
cleanup phase, as well as each round 𝑘 in the update phase.
Most time is spent waiting for the routers to update their
route maps. Explore the reconfiguration plan interactively
at https://bgpsim.github.io?s=abilene.

6 CASE STUDY
We demonstrate the effectiveness of Chameleon in a testbed. The
testbed consists of three Cisco Nexus 7000 devices, each running
four virtual routers. We connect the resulting 12 virtual routers to
a Barefoot Tofino programmable switch, enabling us to emulate
any network with 12 routers. We simulate the physical distances
between routers using a server that delays all packets all link. We
also peer the egress routers with external BGP speakers.

We use the above setup to emulate the Abilene network from
Topology Zoo [21], a network with 11 nodes. We configure the
routers to run OSPF [24] and connect them in an iBGP route reflec-
tion topology with three route reflectors. Then, we generate three
external networks, each injecting routes towards 1024 individual
prefixes at nodes 𝑒1, 𝑒2, and 𝑒3. All nodes prefer routes from 𝑒1
over 𝑒2 and 𝑒3 and decide between 𝑒2 and 𝑒3 based on the shortest
IGP path. The emulated reconfiguration removes the BGP session
between 𝑒1 and its external peer, forcing all routers to change their
routing decision during the reconfiguration. The network treats all
prefixes identically; thus, Chameleon considers only a single prefix
equivalence class.

During the reconfiguration, we require that all destinations
remain reachable. Furthermore, each router must first use 𝑒1 =
𝑒 (Pold (𝑛)) as egress and then switch, only once, to its final egress
𝑒𝑛 = 𝑒 (Pnew (𝑛)) (either 𝑒𝑛 = 𝑒2 or 𝑒𝑛 = 𝑒3). More precisely,

𝜙 =
∧
𝑛∈𝑁

G reach(𝑛) ∧ wp(𝑛, 𝑒1) UGwp(𝑛, 𝑒𝑛) . (4)

To validate if Chameleon satisfies the specification, we inject traffic
at a constant rate at each node towards 𝑑 and measure the egress
router where they leave the network.

Comparison with Snowcap. Snowcap applies the reconfiguration
command directly to the network as the reconfiguration affects
only a single line in the configuration. Fig. 1 in the introduction
shows the comparison between Chameleon and Snowcap. Snow-
cap’ reconfiguration takes 1.7 seconds to finish. However, during

this time, the network drops around 15 k packets for almost one
second of traffic. Further, around 1.3 k packets violate the waypoint
constraints. In contrast, Chameleon performs the reconfiguration
without dropping any packets and permanently preserving way-
point requirements. Chameleon reconfigures the network in around
112 seconds, of which 72 seconds are spent in themain update phase.
Fig. 6 shows Chameleon’s phases and rounds. We run the same
experiment on five different topologies and show the results in the
Appendix (cf. Fig. 12). All experiments show a similar outcome:
reconfiguring the network with Snowcap causes transient black
holes and violations of waypoint constraints, while Chameleon
performs all reconfigurations safely.

7 EVALUATION
In this section, we evaluate the overhead of Chameleon in three
dimensions. First, we analyze the scheduling time (§7.1) and show
that it typically takes Chameleon a few minutes to schedule chal-
lenging BGP reconfigurations that affect the routing state of the
entire network. We additionally capture the two major factors im-
pacting Chameleon’s scheduling time with metrics that we call
reconfiguration and specification complexity; we show that the
former has a heavier impact than the latter. Second, we analyze the
reconfiguration time (§7.2) and show that Chameleon can perform
large reconfigurations in a few minutes while guaranteeing safety
during the entire process. Third, we measure routing table sizes
(§7.3) and compare the memory requirement of Chameleon with
previous work: Snowcap does not need any extra memory, SITN
roughly double, and Chameleon only around 10%.

Implementation. We implement Chameleon using around 7 k
lines of Rust code3 that includes the analyzer, scheduler, compiler,
and runtime controller, and that supports specifications as defined
in Fig. 2. We use our BGP simulator (≈ 30 k lines of Rust code) to
obtain the initial and final routing state and to validate Chameleon’s
reconfiguration plan for experiments that are too large to run di-
rectly on our testbed. We use COIN-OR CBC [8] to solve the ILP.
We run all experiments on a server with 32 CPU cores and 64GB
of memory. COIN-OR CBC is allowed to use all available cores.

Methodology and Reconfiguration Scenario. Weuse 106 topologies
from Topology Zoo [21]: their size ranges from a few routers to 754.
For each topology, we randomly select three different nodes 𝑒1, 𝑒2,
and 𝑒3, and connect them to three external networks. All external
networks advertise the same destination 𝑑 , and all internal nodes
prefer routes received by 𝑒1 over those from 𝑒2 and 𝑒3. We then
elect three random nodes to be BGP route reflectors; each other
router is a client of all three reflectors.

We choose a reconfiguration scenario that affects the routing
state of all routers in the network to evaluate Chameleon in a
challenging setting. Adding or removing individual BGP sessions
are reported to be the most common BGP reconfigurations [36], but
they rarely affect all routers in the network. Instead, we simulate
adding a route map to the initially most preferred egress point 𝑒1:
the route map denies the route towards 𝑑 from its external peer,
forcing all routers in the network to change their selected route
during the reconfiguration.

3The source code is available at https://github.com/nsg-ethz/chameleon (GPLv2 license)

https://bgpsim.github.io?s=abilene
https://github.com/nsg-ethz/chameleon

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

10 100 1,000 10,000

1 s

1min

1 h

≈ 8 h

≈ 18min

Reconfiguration Complexity C𝑟

Sc
he
du

lin
g
tim

e

Figure 7: This figure shows a strong correlation between
reconfiguration complexity C𝑟 and the scheduling time.
Chameleon usually finds a schedule in a few minutes, and
up to 8 hours for the largest scenario, in which 660 routers
change their next hop. A point corresponds to one of 106 sce-
narios, and both the 𝑥- and 𝑦-axis have a logarithmic scale.

7.1 Scheduling Time
We first evaluate Chameleon’s scheduling time. Perhaps surpris-
ingly, the time spent solving the ILP model is not directly propor-
tional to topological metrics such as the network size (see Table 2
in the Appendix).

We investigate themost important factors impacting Chameleon’s
scheduling time. We identify two orthogonal dimensions: recon-
figuration complexity and specification complexity. Intuitively, the
reconfiguration complexity relates to the number of nodes each
router can reach during a reconfiguration, irrespective of the in-
variants to be preserved (i.e., the specification). In contrast, the
specification complexity models the complexity of invariants to be
preserved during a reconfiguration, irrespectively of the network
topology, routing, and forwarding.

In the following, we separately evaluate how Chameleon’s sched-
uling time varies with respect to reconfiguration and specification
complexity. To do so, we evaluate the impact of reconfiguration com-
plexity by keeping the same specification and simulating different
reconfigurations across the 106 networks in our dataset (Figure 7).
We then assess the impact of specification complexity by consider-
ing specifications of increasing complexity for the same network
and reconfiguration scenario (Figure 8).

Reconfiguration Complexity. Some reconfigurations only affect
a few nodes, while some affect nodes located far away from each
other. Other scenarios, however, can update multiple nodes along a
single forwarding path, thus introducing dependencies. As a result,
Chameleon may schedule one scenario in a few milliseconds, while
it needs seconds or even minutes to schedule a different scenario,
even if both reconfigure the same network.

We measure the number of dependencies between nodes by
defining the reconfiguration complexity C𝑟 . Intuitively, C𝑟 counts
for each node 𝑛 the number of different nodes that 𝑛 could reach
during the reconfiguration. To determine C𝑟 , we first construct a
directed graph 𝐺𝑛ℎ = (𝑁, 𝐸𝑛ℎ) as the union of the initial and final
forwarding state𝑛ℎold and𝑛ℎnew (as described in §4.4). For all nodes

𝑁𝜙 = ∅ 𝑁𝜙 = 𝑁
0

5

10

15

20

Specification complexity |𝑁𝜙 |

Sc
he
du

lin
g
tim

e
[m

in
] 𝜙𝑛 non-temporal

𝜙𝑡 temporal

Median

10th–90th
percentile

Figure 8: Temporal expressions have a more significant im-
pact on Chameleon’s scheduling time than non-temporal
constraints. This plot measures the scheduling time for the
same scenario using specifications of different complexity.
At 𝑁𝜙 = ∅, the specification only includes reachability, while
the specification at 𝑁𝜙 = 𝑁 contains temporal (blue) or non-
temporal (orange) waypoint constraints for all nodes.

𝑛 ∈ 𝑁 , 𝐸𝑛ℎ contains edges (𝑛, 𝑛ℎold (𝑛)) and (𝑛, 𝑛ℎnew (𝑛)). Further,
let 𝑁𝑛ℎ = {𝑛 ∈ 𝑁 | 𝑛ℎold (𝑛) ≠ 𝑛ℎnew (𝑛)} be the set of all nodes
that eventually change their next hop, and let reachable(𝐺𝑛ℎ, 𝑛) be
the set of all reachable nodes in 𝐺𝑛ℎ from 𝑛. The reconfiguration
complexity C𝑟 is given as:

C𝑟 =
∑︁

𝑛∈𝑁𝑛ℎ

��reachable(𝐺𝑛ℎ, 𝑛) ∩ 𝑁𝑛ℎ

��.

Note that C𝑟 only depends on the initial and final forwarding states
nhold and nhnew and does not depend on the specification 𝜙 .

Fig. 7 displays a log-log plot that shows the strong correlation
between the reconfiguration complexity C𝑟 and the scheduling time
of Chameleon. Each point represents one reconfiguration scenario.
Chameleon finds a solution in a few minutes despite the non-trivial
specification 𝜙 from Eq. (4) and the network-wide reconfiguration
scenario. In the worst case, it takes our system less than 8 hours to
schedule a reconfiguration in which 754 nodes update their routing
state, and 660 nodes change their next hop. For the vast majority
of scenarios, Chameleon finds a schedule in less than a minute.

We explain the strong correlation between C𝑟 and the scheduling
time based on the semantics of constraints in our ILP. Constraints
related to the specification (§4.3) and concurrent updates (§4.2) are
recursive: a variable 𝑥𝑛

𝑘
associated with node 𝑛 at round 𝑘 depends

on the next hop of 𝑛 at round 𝑘 . Consequently, 𝑥𝑛
𝑘
depends on the

next hop of all nodes along all possible forwarding paths of 𝑛 that
also change their next hop, which C𝑟 precisely captures.

Specification Complexity. The specification language from Fig. 2
captures specifications ranging from reachability to complex way-
point constraints that change over time. We evaluate how the com-
plexity of the specification influences the scheduling time to deter-
mine the impact of (i) recursive properties like waypoints and (ii)
temporal operators.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

To this end, we define two different specifications: 𝜙𝑡 does con-
tain temporal operators in the form UG, and 𝜙𝑛 asserts the same
properties throughout the reconfiguration. We construct 𝜙𝑡 and 𝜙𝑛
as follows: Both specifications require reachability for all nodes and
waypoint constraints for some nodes 𝑁𝜙 . Increasing the number of
nodes in 𝑁𝜙 influences the complexity of the specification. Each
node 𝑛 ∈ 𝑁𝜙 must use either its initial egress router 𝑒1 = 𝑒 (Pold (𝑛))
or its final one 𝑒𝑛 = 𝑒 (Pold (𝑛)) (cf. §6). In addition, the temporal
specification 𝜙𝑡 further requires that node 𝑛 ∈ 𝑁𝜙 switches once
from 𝑒1 to 𝑒𝑛 . More precisely,

𝜙𝑛 =
∧
𝑛∈𝑁

G reach(𝑛) ∧
∧

𝑛∈𝑁𝜙

G
(
wp(𝑛, 𝑒1) ∨ wp(𝑛, 𝑒𝑛)

)

𝜙𝑡 =
∧
𝑛∈𝑁

G reach(𝑛) ∧
∧

𝑛∈𝑁𝜙

wp(𝑛, 𝑒1) UGwp(𝑛, 𝑒𝑛)

Fig. 8 shows the scheduling time for a varying number of nodes in
𝑁𝜙 . The figure refers to reconfigurations on the CogentCo topology,
the network with 197 nodes for which both C𝑟 and the scheduling
time are the second largest of all scenarios (i.e., the scenario with a
scheduling time of 18 minutes in Fig. 7). We run every experiment
20 times for each 𝑁𝜙 and plot the median scheduling time, as well
as the 10th and 90th percentiles for both 𝜙𝑛 (orange) and 𝜙𝑡 (blue).

The figure highlights a significant difference between the non-
temporal specification 𝜙𝑛 and the temporal one 𝜙𝑡 : While adding
more waypoints has a small impact on the scheduling time of
Chameleon, increasing the number of temporal operators affects
the scheduling time significantly. This disparity is because way-
point constraints are recursive; constraints for a single waypoint
target are added for all nodes, even if only one node must use that
waypoint target. In contrast, the temporal operators in 𝜙𝑡 demand
variables and constraints for each additional node in 𝑁𝜙 .

Takeaways. Chameleon’s scheduling time depends on both re-
configuration and specification complexity, two orthogonal dimen-
sions. However, the scheduling time is much more sensitive to the
reconfiguration complexity. In fact, the specification complexity
only affects scheduling time by 20× at most, while the reconfigura-
tion complexity has an impact of over four orders of magnitude.

7.2 Reconfiguration Time
We show that Chameleon applies large-scale reconfigurations in a
fewminutes, while satisfying the specification in all transient states.

Quantifying Reconfiguration Time. Our testbed includes only 12
virtual routers. To estimate the reconfiguration time of Chameleon
in larger networks, we run simulations.

The time for Chameleon to apply a single round depends on two
factors: the time to apply the reconfiguration and the convergence
time itself. From our measurements in Fig. 6, we determine that
routers in our testbed take between 8 and 12 seconds to modify BGP
route maps (presumably to anticipate additional changes, such that
updates can be applied in batches). In contrast, the convergence
time is negligible. This is because Chameleon enforces the happens-
before relations: updating the selected route of one node will never
change the selected route of a different node. Consequently, any
BGP update will be ignored, and the convergence time depends on
the distance between nodes rather than on the network size.

0 s 60 s 2min 5min
0%

85%
100%

Approximate reconfiguration time �̃�

CD
F

Figure 9: The Cumulative Distribution Function (CDF) of the
reconfiguration time �̃� for all 106 scenarios. We approximate
Chameleon to reconfigure 85% of scenarios in less than two
minutes.

We approximate the running time �̃� of a reconfiguration plan by
counting its number of rounds 𝑅, including the setup and cleanup
phase. To that end, we define �̃�𝑟𝑚 as the approximation of the time
to apply a single round of the reconfiguration plan. We approximate
the reconfiguration time as

�̃� = �̃�𝑟𝑚 (2 + 𝑅) .

The reconfiguration time heavily depends on the specific hard-
ware. Our case study suggests �̃�𝑟𝑚 ≈ 12 s for Cisco Nexus 7000
routers. Further, we measure no significant impact of routing table
size on �̃�𝑟𝑚 , as we have compared �̃�𝑟𝑚 for table sizes between 1 and
16 k. In the following, we use �̃�𝑟𝑚 = 12 s.

Results. We estimate the running time for all 106 scenarios and
find that Chameleon’s approximate reconfiguration time is less than
2minutes for 85% of the scenarios while preserving the specification
from Eq. (4). For the largest reconfiguration scenario, we estimate
that Chameleon takes 5 minutes to reconfigure all 754 nodes. We
provide a cumulative distribution function of the approximated
reconfiguration time across all 106 scenarios in Fig. 9.

7.3 Routing Table Size
In the following, we compare Chameleon with related work re-
garding additional routing table entries needed during the recon-
figuration process. On average, Chameleon replicates about 11%
of the routing state to preserve invariants during the transient
state, whereas related work duplicates the entire routing process
to achieve similar guarantees. For Chameleon, the routing table
size increases depending directly on the number of temporary BGP
sessions—the scheduler can minimize the required number of tem-
porary sessions to account for networks or routers with specific
memory limitations.

Methodology. While simulating a reconfiguration, we measure
the maximum number of routing table entries in the network at any
given time during the process. We then compare this distributed
routing table size of Chameleon with the baseline of directly recon-
figuring the network (as Snowcap would also do) and SITN [36].

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

0% 8% 20% 43% 100%
0%

50%

85%
100%

Additional routing table entries

CD
F

Chameleon SITN

Figure 10: In the median case, Chameleon requires 8% more
routing table entries compared with the baseline, while SITN
requires 96%. This figure shows the CDF of the additional
routing table entries required by Chameleon and SITN, nor-
malized by the maximum table size used for the baseline.

Results. Chameleon requires, on average, 11% more routing table
entries than the baseline, whereas SITN requires 96% more entries.
Fig. 10 shows detailed statistics for all 106 scenarios.

We note that temporary BGP sessions exclusively cause state
replication in Chameleon’s reconfigurations. Hence, Chameleon
can customize its reconfiguration plans according to specific mem-
ory limitations of operational networks. For example, if a given
node 𝑛 is operating at its memory’s limit, Chameleon can generate
a reconfiguration plan in which 𝑛 only uses existing BGP sessions
by including a constraint 𝑟𝑛old = 𝑟𝑛nh = 𝑟𝑛new.

8 LIMITATIONS AND DISCUSSION
We now discuss the main limitations of Chameleon. They pertain to
howChameleonmanages constraining specifications, dependencies
between prefixes, and unplanned external events.

Specifications. We design Chameleon to guarantee that for each
BGP destination, every router always selects its best BGP route
in the initial configuration or the final one. We choose to avoid
transiently leaking intermediate routes to neighboring networks,
preventing unnecessary interdomain churn.

The drawback of this choice is that Chameleon may not be able
to compute a safe reconfiguration for highly constrained specifi-
cations. We prove that Chameleon always guarantees reachability
(App. B). However, it may be unable to carry out a safe reconfig-
uration in the presence of many waypointing invariants. This is
because no safe reconfiguration actually exists in some settings if
routers are only allowed to use their initial and final BGP routes.
In those cases, Chameleon notifies the user that it cannot perform
the reconfiguration safely.

We expect that in practice, Chameleon cannot perform reconfig-
urations rarely. In all our experiments (§7), we only encountered
two examples of unsolvable specifications: they try to enforce way-
pointing requirements in a star-shaped topology.

We plan to extend Chameleon so that operators can trade con-
sistency of routes announced to neighboring networks for the fea-
sibility of highly constrained reconfigurations. This would require
explicitly supporting routing invariants, that is, constraints on the

BGP routes selected by routers during reconfigurations. Supporting
routing invariants within Chameleon’s design should be straight-
forward: in addition to updating the specification language (see
Fig. 2), it would involve formulating new happens-before relations
for routing invariants and translating them into ILP constraints.

Dependencies between prefixes. Chameleon treats all prefixes in-
dependently. If a BGP reconfiguration impacts multiple prefixes,
Chameleon computes reconfiguration plans for each prefix, solving
the resulting smaller problems in parallel and performing per-prefix
reconfiguration concurrently. The above approach is consistent and,
hence, correct whenever eBGP routes are not modified in iBGP, as
is often suggested by current best practices.

More advanced BGP configurations can, however, create depen-
dencies between prefixes, such as route aggregation/de-aggregation
or iBGP policies.

• Most BGP speakers support route aggregation, where nodes ag-
gregate multiple routes into a single one and advertise the sum-
mary to neighboring routers. We note that only routes aggre-
gated within a network create dependencies between prefixes.
Typically, routes are aggregated only at the network border to
either reduce the number of routes handled in iBGP or to an-
nounce a single eBGP route to external networks [5]. In those
common cases, it is still correct to treat prefixes independently
since all internal routers know either all individual routes or
only the summarized ones. Similar considerations hold when
prefixes are de-aggregated in sub-prefixes, for example, for traffic
engineering [26].
• Routers may apply arbitrary iBGP policies using route maps, i.e.,
modifications of BGP routes when crossing internal BGP ses-
sions. Some Internet networks do configure iBGP policies [35].
Depending on the configured route maps, this practice can cre-
ate dependencies between prefixes. For example, if route maps
discard a route on internal BGP sessions, different routers may
forward the same packet by matching it to more or less specific
prefixes, depending on which routes they receive.

Chameleon’s scheduler can be extended to support these cases
by jointly considering multiple prefixes. Supporting route aggre-
gation requires generalizing our current happens-before relations.
Additionally, modeling the absence of some routes at specific nodes
can be encoded in the next hop computation of the ILP model.

External Events. Chameleon guarantees network correctness
throughout the reconfiguration process in the absence of exter-
nal events, such as link failures or external route changes. Stated
differently, Chameleon might (transiently) violate some of the in-
variants if external events happen during the reconfiguration.

Because of the commands applied by Chameleon, only the with-
drawals of the best BGP routes can break Chameleon’s correctness
guarantees. By definition, non-best routes are not used by any
router and are, therefore, irrelevant. New best routes that appear
during the reconfiguration are also not problematic since transient
states installed by Chameleon make routers ignore the new routes
until the end of the reconfiguration process. In contrast, Snowcap
is vulnerable to all kinds of BGP events.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

0 7 75
0

16.5 k

Time [s]

Throughput [pkt/s]
Total traffic Egress 𝑒1
Egress 𝑒2 Egress 𝑒3

(a) Link failure after 7 s. Chameleon causes no disruption. Packets
are lost for ≈ 0.5 s because of OSPF convergence.

0 10 66 81
0

16.5 k

Time [s]

Throughput [pkt/s]
Egress 𝑒1 Egress 𝑒2
Egress 𝑒3 Egress 𝑒4

(b) New route announced at 10s is ignored during the update phase.
At 81 s, when we restore the original preferences, all nodes converge
to the new route from 𝑒4.

Figure 11: Chameleon is resilient against many events.

As an illustration, we simulate the effect of unplanned external
events during reconfiguration in our testbed (cf. §6). Fig. 11a shows
the effect of a link failure that causes OSPF to reconverge during
the reconfiguration. OSPF takes around half a second to reconverge,
causing routers to drop packets during that time. The effect of the
link failure would have been similar if it had occurred before or
after the reconfiguration. Fig. 11b shows that the network reacts to
the appearance of a new, more preferred route advertised to 𝑒4 only
after Chameleon restores the original route preferences. That is,
routers choose a sub-optimal path for about 70 seconds, but safety
is preserved throughout the reconfiguration.

We envision that Chameleon’s runtime controller can addition-
ally track the network state and external events, especially BGP
withdrawals, and react to them as follows:

1. If the event does not impact correctness, we can delay its effect
by simply ignoring it, similar to Fig. 11.

2. If the event causes a suboptimal routing state, we can quickly
compute a new reconfiguration plan to reduce the time spent
in a suboptimal routing state. This is enabled by Chameleon’s
scheduling efficiency (cf. §7.1).

3. If the event triggers long-term anomalies, Chameleon immedi-
ately commits to the final configuration so that it can restore
connectivity as quickly as possible.

9 RELATEDWORK
An extended volume of proceeding work from academia and in-
dustry has studied the general network update problem [7]. While
some operate on traditional (distributed) networks, the majority
of systems [19, 23, 27] extend SDN, in which a central controller
modifies the forwarding tables of all nodes. They can give strong
guarantees like per packet consistency or congestion avoidance by
leveraging direct control of the forwarding decision.

As for traditional network update systems, we identify two broad
categories. The first category of tools [2, 18] duplicates the control
and data planes on all routers, allowing them to run both the initial
and the final configurations in parallel. They then gradually instruct
routers to forward traffic according to the final configuration in
an order that avoids forwarding loops [34, 36]. While useful, these
tools tend not to be used in practice due to their overhead.

The second category of tools [6, 9, 28] performs the reconfig-
uration “in-place” by partitioning the configuration changes into
smaller units and gradually applying them to the network while
preserving correctness. Compared to the first category, “in-place”
reconfiguration imposes virtually no overhead, nor does it require
router support. Prior techniques like [6, 9] enable avoiding forward-
ing loops during IGP reconfigurations but are not applicable to
BGP. Snowcap [28] is the only in-place system to reconfigure BGP.
However, it provides correctness guarantees only in steady states.

The literature has proposed many models for distributed routing
protocols, particularly BGP, to verify properties of the network’s
steady state [10, 15, 29]. Most notably, the Stable Paths Problem [14]
formulates conditions for a network to converge to a unique state.
However, they cannot describe how the network converges. In
contrast, Chameleon models transient states during convergence.

Based on previous network models, many promising verification
systems have emerged [1, 11, 13, 30]. These systems are complemen-
tary to Chameleon by verifying the final configuration. Similarly,
network management tools [22, 31, 33] can use our system safely
reconfigure the network.

Finally, research has proposed extensions to BGP [17] to guar-
antee the absence of forwarding loops during convergence. Unfor-
tunately, they have seen little adoption due to additional control
logic introduced to BGP speakers.

10 CONCLUSION
We presented Chameleon, the first system to perform BGP recon-
figuration while maintaining correctness throughout the entire
reconfiguration process. We proposed a framework to describe the
convergence process of BGP and a technique to generate a reconfig-
uration plan that seamlessly transitions the network from the old
to the new configuration. We demonstrated how Chameleon sched-
ules and performs large-scale reconfigurations in real networks
within a few minutes while satisfying complex specifications.

Ethical issues. This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
and helpful feedback. The research leading to these results was
supported by an ERC Starting Grant (SyNET) 851809.

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast multilayer network verification. In 17th USENIX Symposium on
Networked Systems Design and Implementation.

[2] Richard Alimi, Ye Wang, and Y. Richard Yang. 2008. Shadow Configuration as a
Network Management Primitive. SIGCOMM Comput. Commun. Rev. 38, 4 (Aug.
2008), 111–122.

[3] Tony Bates, Enke Chen, and Ravi Chandra. 2006. RFC 4456: Bgp route reflection:
An alternative to full mesh internal bgp (ibgp). Technical Report.

[4] Ann Bednarz. 2023. Global Microsoft cloud-service outage traced to rapid
BGP router updates. (Jan. 2023). https://www.networkworld.com/article/
3686531/global-microsoft-cloud-service-outage-traced-to-rapid-bgp-router-
updates.html

[5] Cisco. 2013. Understand Route Aggregation in BGP. (2013). Accessed: June 2023.
[6] Francois Clad, Stefano Vissicchio, Pascal Mérindol, Pierre Francois, and Jean-

Jacques Pansiot. 2014. Computing minimal update sequences for graceful router-
wide reconfigurations. IEEE/ACM Transactions on Networking 23, 5 (2014), 1373–
1386.

[7] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. 2018. Survey of
consistent software-defined network updates. IEEE Communications Surveys &
Tutorials 21, 2 (2018), 1435–1461.

[8] John Forrest, Ted Ralphs, and Haroldo Gambini Santos. [n. d.]. coin-or/Cbc 2.10.8.
(May [n. d.]).

[9] Pierre Francois, Mike Shand, and Olivier Bonaventure. 2007. Disruption free
topology reconfiguration in OSPF networks. In IEEE INFOCOM 2007-26th IEEE
International Conference on Computer Communications. IEEE, 89–97.

[10] Lixin Gao and Jennifer Rexford. 2001. Stable Internet Routing without Global
Coordination. IEEE/ACM Trans. Netw. 9, 6 (2001), 681–692.

[11] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast control plane analysis using an abstract representation. In Proceedings
of the 2016 ACM SIGCOMM Conference. 300–313.

[12] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya Akella, and Ratul Ma-
hajan. 2015. Management plane analytics. In Proceedings of the 2015 Internet
Measurement Conference. 395–408.

[13] Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: An
intermediate language for verification of network control planes. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 958–973.

[14] Timothy G Griffin, F Bruce Shepherd, and Gordon Wilfong. 2002. The stable
paths problem and interdomain routing. IEEE/ACM Transactions On Networking
10, 2 (2002), 232–243.

[15] Timothy G Griffin and Gordon Wilfong. 2002. On the correctness of IBGP
configuration. ACM SIGCOMM Computer Communication Review 32, 4 (2002),
17–29.

[16] Igor Griva, Stephen G Nash, and Ariela Sofer. 2009. Linear and nonlinear opti-
mization. Vol. 108. Siam.

[17] Nikola Gvozdiev, Brad Karp, Mark Handley, et al. 2013. LOUP: The Principles
and Practice of Intra-Domain Route Dissemination. In NSDI. 413–426.

[18] Gonzalo Gomez Herrero and Jan Antón Bernal Van der Ven. 2011. Network
Mergers and Migrations: Junos Design and Implementation. John Wiley & Sons.

[19] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM.
15–26.

[20] Hyojoon Kim, Theophilus Benson, Aditya Akella, and Nick Feamster. 2011. The
evolution of network configuration: a tale of two campuses. In Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference. 499–514.

[21] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. The
Internet Topology Zoo. Selected Areas in Communications, IEEE Journal on 29, 9
(october 2011), 1765 –1775.

[22] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang, Hui Xu, Lei
Zhou, Qing Ma, and Ming Zhang. 2018. Automatic life cycle management of
network configurations. In Proceedings of the Afternoon Workshop on Self-Driving
Networks. 29–35.

[23] Ratul Mahajan and Roger Wattenhofer. 2013. On consistent updates in software
defined networks. In Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks. 1–7.

[24] John Moy. 1998. RFC 2328: OSPF Version 2. Technical Report.
[25] William R Parkhurst. 2001. Cisco BGP-4 command and configuration handbook.

Number 2969. Cisco Press.
[26] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig. 2003. Interdomain

traffic engineering with BGP. IEEE Communications Magazine 41, 5 (2003), 122–
128. https://doi.org/10.1109/MCOM.2003.1200112

[27] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. 2011. Consistent
updates for software-defined networks: Change you can believe in!. In Proceedings
of the 10th ACM workshop on hot topics in networks. 1–6.

[28] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snowcap: Syn-
thesizing Network-Wide Configuration Updates. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference (SIGCOMM ’21). New York, NY, USA, 33–49.

[29] Joao Luis Sobrinho. 2003. Network routing with path vector protocols: Theory
and applications. In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications. 49–60.

[30] Samuel Steffen, TimonGehr, Petar Tsankov, Laurent Vanbever, andMartin Vechev.
2020. Probabilistic verification of network configurations. In Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication.
750–764.

[31] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. 2014. A network-state management service. In Proceedings of the 2014
ACM Conference on SIGCOMM. 563–574.

[32] Yu-Wei Eric Sung, Sanjay Rao, Subhabrata Sen, and Stephen Leggett. 2009. Ex-
tracting network-wide correlated changes from longitudinal configuration data.
In Passive and Active Network Measurement: 10th International Conference, PAM
2009, Seoul, Korea, April 1-3, 2009. Proceedings 10. Springer, 111–121.

[33] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi Zeng. 2016.
Robotron: Top-down network management at facebook scale. In Proceedings of
the 2016 ACM SIGCOMM Conference. 426–439.

[34] Laurent Vanbever, Stefano Vissicchio, Cristel Pelsser, Pierre Francois, and Olivier
Bonaventure. 2011. Seamless network-wide IGP migrations. In Proceedings of the
ACM SIGCOMM 2011 Conference. 314–325.

[35] Stefano Vissicchio, Luca Cittadini, and Giuseppe Di Battista. 2015. On IBGP
Routing Policies. IEEE/ACM Trans. Netw. 23, 1 (feb 2015), 227–240.

[36] Stefano Vissicchio, Laurent Vanbever, Cristel Pelsser, Luca Cittadini, Pierre Fran-
cois, and Olivier Bonaventure. 2012. Improving network agility with seamless
BGP reconfigurations. IEEE/ACM Transactions on Networking 21, 3 (2012), 990–
1002.

https://www.networkworld.com/article/3686531/global-microsoft-cloud-service-outage-traced-to-rapid-bgp-router-updates.html
https://www.networkworld.com/article/3686531/global-microsoft-cloud-service-outage-traced-to-rapid-bgp-router-updates.html
https://www.networkworld.com/article/3686531/global-microsoft-cloud-service-outage-traced-to-rapid-bgp-router-updates.html
https://doi.org/10.1109/MCOM.2003.1200112

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

Topology |𝑁 | C𝑟 scheduling time

Deltacom 113 1810 23.4 s
Ion 125 2731 189.0 s
Pern 127 162 3.7 s
TataNld 145 3343 99.2 s
Colt 153 1194 15.6 s
UsCarrier 158 2505 50.5 s
Cogentco 197 4657 978.4 s

Table 2: The reconfiguration complexity C𝑟 shows stronger
correlation with scheduling time than the number of nodes
in the network.

APPENDIX
In the following, we provide supporting material that has not been
peer-reviewed.

A NETWORK SIZE VS. RECONFIGURATION
COMPLEXITY

Table 2 shows the network size and reconfiguration complexity
for seven different topologies from TopologyZoo, together with
Chameleon’s time to schedule the same reconfiguration as in §7.1
(Table 2 shares the same data as Fig. 7). We find stronger correlation
between the reconfiguration complexity C and scheduling time
than with the number of nodes |𝑁 | in the network. For instance,
the topology Pern has more nodes than Ion, but its scheduling time
is smaller by almost two orders of magnitude. However, Ion has a
reconfiguration complexity that is around 20 times larger than the
one of Pern.

B EXISTENCE OF A SOLUTION
The scheduler presented in §4 only allows a router to change its
forwarding decision once from the initial to the final next hop. In the
following, we prove that this technique is sufficient for maintaining
reachability throughout the reconfiguration.

Theorem 1. Let 𝑁 be a set of nodes and 𝜙 =
∧

𝑛∈𝑁 reach(𝑛) be
the specification. Further, let nhold and nhnew : 𝑁 ↦→ 𝑁 ∪ {∅, 𝑑}
be the initial and final forwarding state. Let 𝑠 : 𝑁 ↦→ {1, . . . , 𝑅}
be a node schedule, and let nh𝑘 be the forwarding state at round 𝑘
according to 𝑠 . If nhold |= 𝜙 and nhnew |= 𝜙 , then there exists a node
schedule 𝑠 such such that ∀𝑘 ∈ {1, . . . , 𝑅} : nh𝑘 |= 𝜙 .

Proof. We proof Theorem 1 by constructing a 𝑠 , such that ∀𝑘 :
nh𝑘 |= 𝜙 . We do so using a breath-first traversal of nhnew, as shown
in Alg. 1. For each round 𝑘 , the algorithm keeps a set of nodes 𝑁𝑘 ⊆
𝑁 ∪ {𝑑} have updated its state at round 𝑘 , i.e., ∀𝑛 ∈ 𝑁𝑘 , 𝑠 (𝑛) ≤ 𝑘 .
In each round 𝑘 , the algorithm picks one node 𝑛 ∈ 𝑁𝑥 that has
𝑛 ∉ 𝑁𝑘−1 and nhnew (𝑛) ∈ 𝑁𝑘 to migrate at this round 𝑠 (𝑛) = 𝑘 .

Notice, that 𝑁𝑘 is always constructed from 𝑁𝑘−1 by adding a
single node 𝑛 ∈ 𝑁𝑥 for which nhnew (𝑛) ∈ 𝑁𝑘−1. Therefore, at each
step 𝑘 , nodes within 𝑁𝑘 form a tree rooted at 𝑑 within 𝑛ℎ𝑘 . Thus,
in every round 𝑘 , ∀𝑛 ∈ 𝑁𝑘 : nhnew (𝑛) ∈ 𝑁𝑘 , and that all nodes
𝑛 ∈ 𝑁𝑘 eventually reach 𝑑 using nh𝑘 .

Algorithm 1 Building a schedule 𝑠 for transitioning from nhold to
nhnew. This algorithm is used to proof Theorem 1.
1: procedure Solve(𝑁, nhold, nhnew)
2: 𝜙 ← G

∧
𝑛∈𝑁 reach(𝑛)

3: ∀𝑛 ∈ 𝑁 : 𝑠 (𝑛) ← 0
4: 𝑘 ← 1
5: 𝑁𝑘 = {𝑑} ⊲ Set of nodes already updated.
6: 𝑁𝑥 ← {𝑛 ∈ 𝑁 \ 𝑁𝑘 | nhnew (𝑛) ∈ 𝑁𝑘 }
7: while 𝑁𝑥 ≠ ∅ do
8: 𝑛 ← pick 𝑁𝑥

9: 𝑠 (𝑛) ← 𝑘
10: 𝑘 ← 𝑘 + 1
11: 𝑁𝑘 ← 𝑁𝑘−1 ∪ {𝑛} ⊲ 𝑁𝑘 ← {}
12: 𝑁𝑥 ← {𝑛 ∈ 𝑁 \ 𝑁𝑘 | nhnew (𝑛) ∈ 𝑁𝑘 }
13: end while
14: return 𝑠
15: end procedure

Next, we show that we eventually schedule all nodes, i.e., that
∀𝑛 ∈ 𝑁, 𝑠 (𝑛) > 0. For the sake of contradiction, let 𝑁 ∗ be the set of
nodes for which 𝑠 (𝑛) = 0. Since nhnew |= 𝜙 , each node 𝑛 ∈ 𝑁 ∗ can
reach 𝑑 in the final state. Let 𝑛 ∈ 𝑁 ∗ be the node with the shortest
path towards 𝑑 in nhnew. Since 𝑠 (𝑛) = 0 we know that 𝑛 ∉ 𝑁𝑥 at
Line 14. However, this is impossible since nhnew (𝑛) ∈ 𝑁𝑘 as 𝑛 is
the node in 𝑁 ∗ with the shortest path towards 𝑑 .

We now prove that ∀𝑘 : nh𝑘 |= 𝜙 . To that end, consider any node
𝑛 ∈ 𝑁 and any round 𝑘 . Let 𝑁𝑘 = {𝑛 ∈ 𝑁 | 𝑠 (𝑛) ≤ 𝑘} be the set of
all nodes already updated in round 𝑘 . We have already shown that
all nodes in 𝑁𝑘 eventually reach𝑑 in nh𝑘 . Thus, let 𝑛 ∉ 𝑁𝑘 , and let 𝑝
be the path of 𝑛 in nh𝑘 . If 𝑝 ∪𝑁𝑘 = ∅, then 𝑝 is the same as the path
of 𝑛 in nhold, which must end at the destination since nhold |= 𝜙 .
Otherwise, if 𝑝 ∪𝑁𝑘 ≠ ∅, then the path 𝑝 eventually enters 𝑁𝑘 , and
thus, nh𝑘 |= 𝜙 . This concludes the proof of Theorem 1. □

C SUPPLEMENTARY CASE STUDIES
The case study in §6 only considers the Abilene network from
Topology Zoo [21]. We also run the same scenario for 5 additional
topologies: Compuserve, Hibernia Canada, Sprint, JGN2plus, and
EEnet that contain 11 or 12 internal routers.

Similar to §6, we configure each topology with randomOSPF link
weights, and we elect three random routers as BGP route reflectors.
We simulate three external networks 𝑒1, 𝑒2, 𝑒3, advertising the same
1024 prefixes to three internal routers, while the routes towards
𝑒1 have a shorter AS path length than the ones from 𝑒2 and 𝑒3.
The reconfiguration involves removing the eBGP session towards
𝑒1, causing all routers to select either the routes from 𝑒2 or 𝑒3,
depending on the shorter IGP path. We use the specification from
Eq. (4) that requires reachability and contains temporal waypoints.

We reconfigure the network both with Snowcap [28] (which
simply applies the reconfiguration command) and Chameleon. We
find that Snowcap causes black holes for one to two seconds in all
scenarios. Snowcap additionally violates waypoint invariants in
four out of five scenarios. Chameleon, however, reconfigures the
networks while satisfying the specification. It takes Chameleon less
than 1 minute to perform the reconfiguration in all five scenarios.

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Topology: Compuserve (https://bgpsim.github.io?s=compuserve)

0 2.34
0

16.5 k
Th

ro
ug

hp
ut

[p
kt
/s
]

0 36.7

Topology: Hibernia Canada (https://bgpsim.github.io?s=hibernia)

0 2.3
0

16.5 k

Th
ro
ug

hp
ut

[p
kt
/s
]

0 46.2

Topology: Sprint (https://bgpsim.github.io?s=sprint)

0 1.55
0

16.5 k

Th
ro
ug

hp
ut

[p
kt
/s
]

0 37.3

Topology: JGN2plus (https://bgpsim.github.io?s=jgn2plus)

0 2
0

16.5 k

Th
ro
ug

hp
ut

[p
kt
/s
]

0 47.1

Topology: EEnet (https://bgpsim.github.io?s=eenet)

0 2.05
0

16.5 k

Time [s]

Th
ro
ug

hp
ut

[p
kt
/s
]

Total traffic Waypoint Violations

0 34.7Time [s]
Egress 𝑒1 Egress 𝑒2 Egress 𝑒3

Figure 12: Chameleon consistently and safely reconfigures a network, while Snowcap [28] triggers black holes, and violates
waypoint specifications. We repeat a similar experiment to Fig. 1 on five additional topologies from Topology Zoo [21], all
containing 11 or 12 routers. The reconfiguration causes routers to change their selected route from 𝑒1 to either 𝑒2 or 𝑒3. The left
column shows the total traffic (and violations) for Snowcap, while the right shows the throughput for Chameleon

https://bgpsim.github.io?s=compuserve
https://bgpsim.github.io?s=hibernia
https://bgpsim.github.io?s=sprint
https://bgpsim.github.io?s=jgn2plus
https://bgpsim.github.io?s=eenet

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Tibor Schneider et al.

D ABSENCE OF LOOPS
In the following, we proof that the constraints from Eq. (2) also
ensure the absence of forwarding loops in all rounds. We further
evaluate the impact of the explicit constraints from Eq. (3) on the
scheduling time of Chameleon.

Theorem 2. Let 𝑁 be a set of nodes (routers), and let nhold : 𝑁 ↦→
𝑁 ∪ {∅, 𝐷} and nhnew : 𝑁 ↦→ 𝑁 ∪ {∅, 𝐷} be the initial and final
forwarding state. For each node 𝑛 ∈ 𝑁 , let 𝑟𝑛nh be the round in which
𝑛 changes from its old next hop nhold (𝑛) to nhnew (𝑛). If nhold is free
of forwarding loops, and if Eq. (2) is satisfied for each node 𝑛 and
round 𝑘 (i.e., all updates of the same round are independent), then the
resulting forwarding state in each round 𝑘 is free of forwarding loops.

Proof. We prove this statement by contradiction. Let 𝑘 be the
first round in which a forwarding loop 𝐿 = (𝑛1, . . . , 𝑛𝑖 , . . . , 𝑛𝑙 , 𝑛1)
appears. Further, let 𝑛𝑖 ∈ 𝐿 be a node in the loop that changes its
next hop to 𝑛𝑖+1 in round 𝑘 . Node 𝑛𝑖 must exist, since round 𝑘 − 1
is loop-free. Further, since all updates in round 𝑘 are independent,
no other node 𝑛 𝑗 ∈ 𝐿 \ {𝑛𝑖 } updates its next hop in round 𝑘 . Thus,
𝛿
𝑛 𝑗

𝑘
= 𝛿

𝑛 𝑗+1
𝑘

for all 𝑗 ≠ 𝑖 . Repeatedly applying Eq. (2) yields

𝛿𝑛𝑖
𝑘
≥ 1 + 𝛿𝑛𝑖+1

𝑘
= 1 + 𝛿𝑛𝑖+2

𝑘
= . . . = 1 + 𝛿𝑛𝑖

𝑘
.

This is equivalent to 0 ≥ 1, and, by contradiction, proves that Eq. (2)
ensures the absence of forwarding loops. □

Even though the constraints from Eq. (2) implicitly ensure loop-
freedom, we explicitly add constraints as described in §4.4. We
do this because we notice the variance of the scheduling time de-
creasing when using explicit loop constraints. Fig. 13 shows the
difference of solving the same problem with and without explicit
constraints. In the most extreme case, the scheduling time with
implicit constraints is around 40× larger than solving the same
problem with explicit constraints.

E WEB SIMULATOR TUTORIAL
Along with this publication, we provide an application to visual-
ize Chameleon’s reconfiguration plans. The simulator is available
directly in the browser (https://bgpsim.github.io). The application
simulates BGP events, visualizes the current (transient) state, and
verifies forwarding policies. We prepare Chameleon’s reconfigura-
tion plan for both the running example and the case study:
• The example (cf. Fig. 3) without Chameleon:
https://bgpsim.github.io?s=example-baseline.
• The example (cf. Fig. 3) with a reconfiguration plan:
https://bgpsim.github.io?s=example.
• The case study (cf. §6) without Chameleon:
https://bgpsim.github.io?s=abilene-baseline.
• The case study (cf. §6) with a reconfiguration plan:
https://bgpsim.github.io?s=abilene.

E.1 Visualization
The application visualizes the network using four different layers,
two of which show the current state of the network while the other
two show the configuration. The button 1 on the top left switches
between those layers.

𝑁𝜙 = ∅ 𝑁𝜙 = 𝑁

1

10

100

Specification complexity |𝑁𝜙 |

Sc
he
du

lin
g
tim

e
[m

in
]

implicit, without Eq. (3)
explicit, with Eq. (3)

Figure 13: Adding explicit constraints to avoid forwarding
loops with Eq. (3) significantly reduces the variance of the
scheduling time of Chameleon. This plot shows the schedul-
ing time of Chameleon for the same scenario using different
specifications arranged on the 𝑥-axis (as for Fig. 8). The red
points show the scheduling time without explicit loop con-
straints, while the green points show the scheduling time
with explicit constraints. The 𝑦-axis has a logarithmic scale.

The Data Plane layer displays the forwarding state. Hovering
over nodes highlights their forwarding path to reach the destination.
Similarly, the Control Plane layer visualizes the propagation of BGP
routes as arrows. Hovering over a yellow arrow will display the
propagated route attributes, while hovering over a node will show
the current routing table of that node, along with its selected route.

On the other hand, both the IGP Config and BGP Config layers
visualize parts of the current configuration. Selecting a node will
show its complete BGP configuration on the right side of the screen.

E.2 Event-Based Simulation
The application is based on an event-based simulator. Each BGP
message is an event, enqueued in a FIFO queue. Once executed, the
event has an immediate effect and might enqueue new events. The
simulator does not execute events automatically, but when the user
clicks on 3 . Clicking the button on the top right 2 displays all
currently enqueued events on the right side. This list allows the
user to trigger an event explicitly. Finally, 4 executes the entire
queue until a violation occurs or the queue is empty.

E.3 Reconfiguration Plan
Clicking the button 5 shows the current reconfiguration plan
on the right, grouped into the three phases (collapsed by default).
Expanding a phase (and a round of the update phase) reveals the
pre-condition 6 , the command 7 , and its post-condition 8 . The
left side indicates whether the conditions are satisfied and if the
command is already applied. Clicking on a command will execute
it, assuming that the pre-conditions are satisfied.

The application continuously verifies the conditions. The current
status is shown left of the reconfiguration plan 9 Clicking the icon
reveals a list of all satisfied or violated invariants.

https://bgpsim.github.io
https://bgpsim.github.io?s=example-baseline
https://bgpsim.github.io?s=example
https://bgpsim.github.io?s=abilene-baseline
https://bgpsim.github.io?s=abilene

Taming the transient while reconfiguring BGP ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

1 2345

6

7

8

9

Figure 14: Screenshot of the web application (https://bgpsim.github.io) to visualize a reconfiguration plan.

https://bgpsim.github.io

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem Statement
	2.2 Chameleon

	3 Analyzer
	4 Scheduler
	4.1 Happens-Before Relations
	4.2 Concurrent Updates
	4.3 Specification
	4.4 Absence of loops

	5 Compiler
	6 Case Study
	7 Evaluation
	7.1 Scheduling Time
	7.2 Reconfiguration Time
	7.3 Routing Table Size

	8 Limitations and Discussion
	9 Related Work
	10 Conclusion
	References
	A Network Size vs. Reconfiguration Complexity
	B Existence of a Solution
	C Supplementary Case Studies
	D Absence of Loops
	E Web Simulator Tutorial
	E.1 Visualization
	E.2 Event-Based Simulation
	E.3 Reconfiguration Plan

